

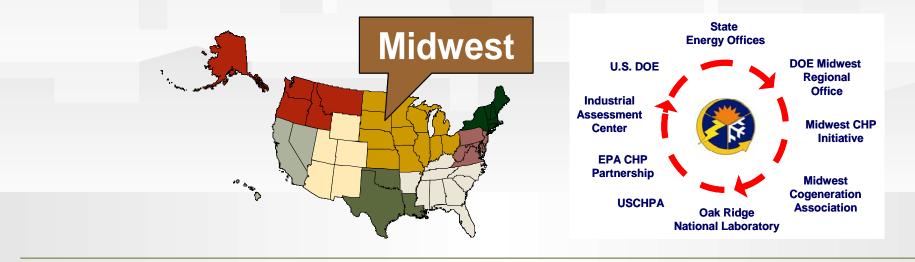
Using Biogas for Heat Recovery

Biogas: Scaling up biogas production in North America San Francisco, California

October 1-2, 2009

Cliff Haefke U.S. DOE Midwest Clean Energy Application Center Energy Resources Center University of Illinois at Chicago

© 2009 The Trustees of the University of Illinois



Topics to be Covered

- Biogas and Heat Recovery Applications
- Feasibility Evaluations and Technical Challenges
- Example Heat Recovery Applications
- Outlook and Market Potential

U.S. DOE Midwest Clean Energy Application Center

- Originally established in 2001 by US DOE to support DOE CHP Challenge
- Today the center advocates CHP, District Energy, and Waste Heat Recovery
- Located at University of Illinois at Chicago (UIC)
- Provide targeted education, unbiased information, and technical assistance to 12 state Midwest region
- Work closely with state energy offices
- 7 other Regional Application Centers established since 2003

What is Biogas?

- According to wikipedia...
 - Biogas typically refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen.
 - Biogas originates from biogenic material and is a type of biofuel.

Source: http://en.wikipedia.org/wiki/Biogas

What Resources are Producing Biogas?

Landfill Gas


Anaerobic Digesters

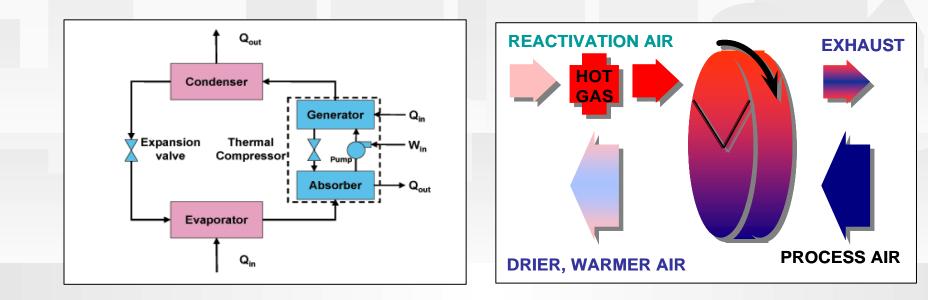
Livestock Waste Food Processing Wastewater Treatment Gasification

Biogas to Heat Recovery

How is heat delivered from a biogas resource?

Generating Heat from Biogas

- Typical Heat Generating Technologies
 - Boiler (hot water, low pressure steam, high pressure steam)
 - Furnace
 - Dryer
- CHP Heat Generating Technologies
 - Direct Exhaust Gases
 - Heat Exchanger (hot water)
 - Heat Recovery Steam Generator (HRSG)


Heat Recovery from CHP Prime Movers

Prime Mover	Pic	Size Range	Heat Recovery
Reciprocating Internal Combustion (IC) Engines		< 5 MW	Jacket Water: 200-265degF Exhaust: 850-1200degF Hot water, Low Pressure Steam Exhaust
Gas (combustion) Turbines		> 2 MW	High Grade Heat Available (up to 1,200 psig and 900degF) Low Pressure Steam High Pressure Steam
Microturbines		30 – 250 KW	Exhaust Temp: 400-600degF Hot water, Space Heating, Thermally Activated Equipment
Fuel Cells		< 2 MW	Hot Water, Space Heating, and Low Pressure Steam
Steam Turbines		> 50 kW	Ability to Meet Various Required Steam Loads and Pressure

8

Thermally Activated Systems

- Absorption Chiller
- Desiccant Dehumidification
- Steam or Hot Water Heating Loops
- Steam Turbines (Bottoming Cycles)

How is Heat being utilized from Biogas? Thermal Applications

- Specific Heating Applications utilizing Biogas
 - Space Heating and Cooling
 - Process Heating and Cooling
 - Potable hot water
 - Steam (low and high pressure)
 - Direct Exhaust
 - Desiccant Dehumidifiers
 - CHP Heat Recovery

Energy Considerations for Utilizing Biogas

- Evaluate type of energy used at facility
- Evaluate how much energy used and when
- Consider electric generation and/or heating
 - Heating is usually a seasonal operation
 - Is there a year-round thermal process?
 - Lower volumes of biogas more suitable for heat recovery only
 - Electricity generation is convenient (year-round)
 - Purchased price of energy

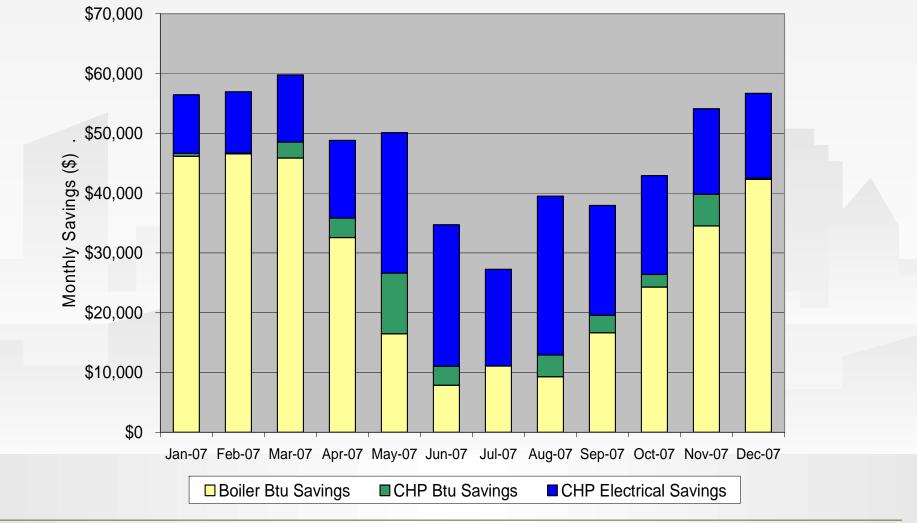
Attractive Characteristics for Biogas Heat Recovery

- Consistent and year-round thermal loads
 - Example loads: digester, process heating, space heating, hot water, etc.
 - Batch processes unfavorable
- Central heating/cooling facilities
- Proximity of biogas uses
- Other available waste streams (including dual fuel and/or co-firing)
- Long operating hours
- Internal champions: technical & financial
- Renovation and/or expansion of existing facilities
- Neighboring facilities requiring thermal energy
- If incorporating CHP technologies, you have "free" heat

Technical Challenges/Opportunities of Biogas Heat Recovery Projects

- Analyzing biogas characteristics
 - Gas composition (CH4, moisture, contaminants, etc.)
 - Flow rates (average/peak)
- Meeting equipment specifications
 - Increased maintenance vs. gas conditioning
 - Gas pressure
- Meeting emissions regulations
- Alternative uses of the resource that could affect future availability or price
- Gas storage opportunities
- Accepting other waste streams
- Electric utility a non-factor in heat only applications

Example #1 – Seasonal CHP and Boiler Operation


- Site: Rochester Water Reclamation Plant
- Location: Rochester, MN
- Began Operation: 1982
- Operation Description:
 - 24 MGD wastewater treatment facility utilizing anaerobic digesters
- Project Description:
 - Biogas is utilized seasonally in
 - CHP system (2 MW capacity)
 - Boilers

Example #1 – Seasonal CHP and Boiler Operation (cont.)

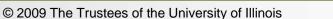
2007 Annual Savings (\$564,000)

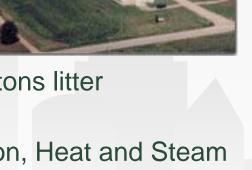
Example #2 – Absorption Cooling using Biogas

- Site: Egan Water Reclamation Plant
- Location: Schaumburg, IL
- Operation Description:
 - Utilizes anaerobic digesters with gas storage
 - 30 MGD average flow
 - 50 MGD maximum flow
- Project Description:
 - Biogas is utilized to generate 15 psi low pressure steam
 - Steam loads required in the winter and summer months
 - Steam required for process and space heating
 - Absorption chillers aid in humidity control

Source: http://www.ihcconstruction.com

Example #3 – Biogas Heating for Drying Biofibers

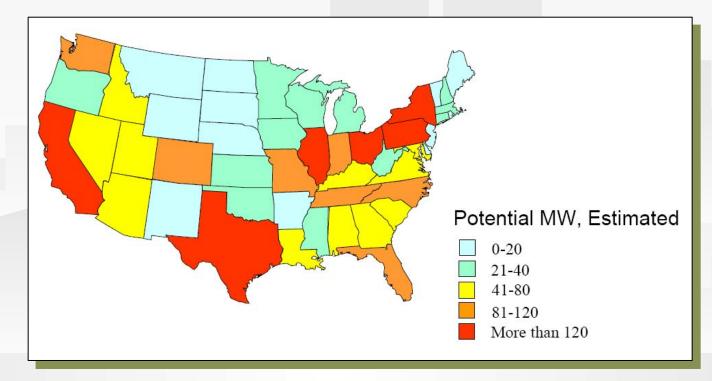

- Site: Geerlings Hillside Farms
- Location: Overisel, MI
- Began Operation: 2008
- Project Developer: Phase 3 Renewables
- Operation Description: Swine Farm with 8,000 spaces wean to finish
- Project Description: Anaerobic digestion
 - Biogas utilized in two (2) 65 kW engines (CHP system) and one (1) 1 MMBtu Boiler
 - Recovered heat from engines and heat from boilers is used to dry biofibers to enable pelletization
 - Pellet mill can produce 1.5 tons per hour; pellets can be used for fertilizer, boiler fuel or horse bedding


Case Study #4 – Biogas Heating for Multiple Products

- Site: DRANCO Farm
- Location: Nuestedt, Germany
- Began Operation: 2008
- Project Developer: Organic Waste Systems, n.v.
- Operation Description: Farm-based biomass energy plant
- Project Description: Anaerobic Digestion using biogas in engines and a steam boiler (year-round)
- Heat Applications 4 MM Btu/hr:
 - Feedstock pretreatment and digester heating
 - Barn, office, farm house and neighboring house heat
 - Drying wood chips
 - Drying firewood
 - Drying dog food ("chew toys")

Example #5 – Gasification for Air Turbine and Steam

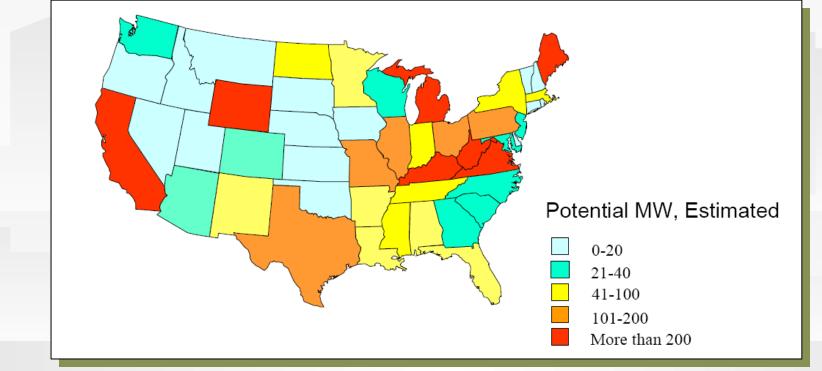
- Site: Sietsema Farms Feeds
- Location: Howard City, MI
- Began Operation: 2009
- Project Developer: Phase 3 Renewables
- Operation Description: Turkey Grower & Feed Mill
 - 1.5 million birds, five separate farm sites, 11,000 tons litter
 - Feed mill produces feed for turkeys and swine
- Project Description: Gasification, Electricity Generation, Heat and Steam
- Heat Application:
 - Syngas produced in SALT gasification facility
 - Advanced ceramic heat exchanger recovers air for use in 500kW air turbine generator
 - Metal heat exchanger recovers heat for 8,600 lbs/hr steam @ 150 psig for feed pelleting process



CHP Market Potential in New LFG Projects

Of estimated 6,000 landfills in the U.S., of which at least 2,500 are active, only 350 currently utilize landfill gas for power

- 1,857 potential # of projects
- 3,006 potential megawatt (MW) generating capacity

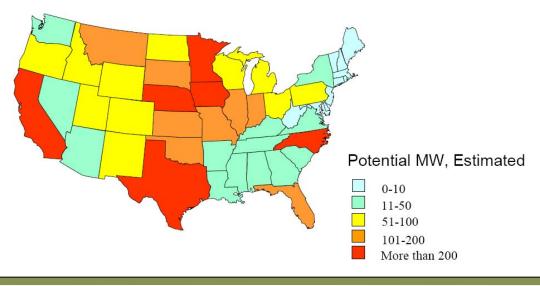


Source: Combined Heat and Power Market Potential for Opportunity Fuels, Resource Dynamics Corporation, December 2004, <u>http://files.harc.edu/Sites/GulfCoastCHP/MarketAssessments/CHPPotentialOpportunityFuels.pdf</u>

CHP Market Potential in Municipal WWTFs

If 1 MGD is the cut-off size limit for feasible AD/CHP applications... (note: technically feasible, not economically feasible)

- 6,850 potential # of projects
- 4,275 potential megawatt (MW) capacity

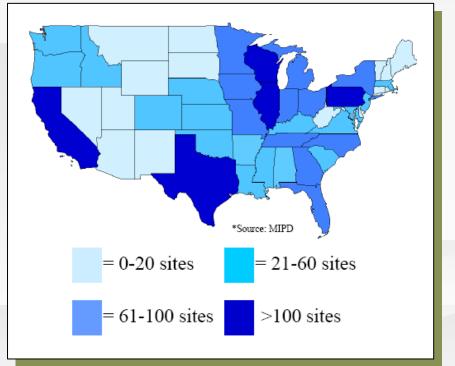


Source: Combined Heat and Power Market Potential for Opportunity Fuels, Resource Dynamics Corporation, December 2004, <u>http://files.harc.edu/Sites/GulfCoastCHP/MarketAssessments/CHPPotentialOpportunityFuels.pdf</u>

© 2009 The Trustees of the University of Illinois

CHP Market Potential in Animal Farms

- Number of farms with CHP potential
 - 28,329 farms w/ over 200 beef cows
 - 7,440 farms w/ over 200 dairy cows
 - 11,881 farms w/ over 1,000 hogs/pigs
- **Total Number of Sites**
 - 47,650 potential sites
 - 4,554 potential megawatt (MW) capacity



© 2009 The Trustees of the University of Illinois

Market Potential in Food Processing Facilities

- US food processing accounts for 26% of food processing output of the world
- There are over 10,000 food processing facilities in US
- 2,281 food processing sites in the Major Industrial Plant Database (MIPD)
- Over 200 food processing facilities utilize CHP today generating over 6,000 MW of electricity

Summary Messages

- Many opportunities for biogas energy recovery projects (DG, CHP, direct-fired, pipeline, etc.)
- When considering biogas heat recovery projects...
 - Don't only consider typical heating applications
 - Also consider absorption/adsorption cooling, desiccant dehumidification, etc.
- Biogas to energy projects are not feasible for every site, but when they make technical and economic sense, there are many related benefits
- Many working examples of existing projects
 - Learn from others' experiences
 - Lessons learned, case studies, reports, etc.

Questions / Discussions

Contact Information

Cliff Haefke Energy Resources Center University of Illinois @ Chicago 312/355-3476 <u>chaefk1@uic.edu</u>

U.S. DOE Midwest Clean Energy Application Center www.chpcentermw.org