MIXED DIGESTERS

Jeffery Lorimor Iowa State Univ. Associate Professor Ag & Biosystems Department

Mixed Digesters

- Completely Stirred Tank Reactor (CSTR)
 - Continuous flow/stir process
- Sequencing Batch Reactor (SBR)
 - Batch reactor
 - Feed
 - Stir
 - Settle
 - Decant

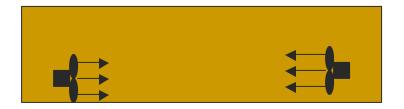
Stirred Ag Reactors in the U.S.

- 15 mixed digesters*
 - o 10 dairy
 - 3 swine
 - 1 caged layers
 - o 1 ducks

*Per Agstar database Oct. 2002

Mixed Digesters

CSTR...HRT = SRT


- Generally design for long detention times
 - 20-30 days
 - Means relatively large volume required...more \$\$
 - Theoretically fresh manure is discharged if mixing is thorough

SBR...HRT>SRT

- HRT may be very short...days or even hours
- SRT is very long...provides more thorough digestion

Mixed Digesters

- Must have some type of mechanical system for agitating the manure
 - Mechanical propellers
 - Submerged motors
 - Exposed motors with shafts extending into the manure
 - o Pumps
 - Recirculate liquid
 - Recirculate gas

Manure Thickness

- Mixed reactors are good for manures too thin for plug flow and too thick for lagoons
 - Plug flow:
 - Lagoons:
 - Mixed:

- 10 13% TS (dairy)
- 0.1 2% TS (flush sys)
- 2 5% TS (swine)

Manure Thickness

Swine manure

- Farrowing/gestation:
- Finishing houses:

- 3.0-5.0% TS 4.0-9.0% TS
- May have to be diluted if too thick
- Dairy manure
 - Typically 10-13% undiluted
 - Bedding may thicken it
 - Works best undiluted in plug flow digester
 - Sand and digesters don't go together

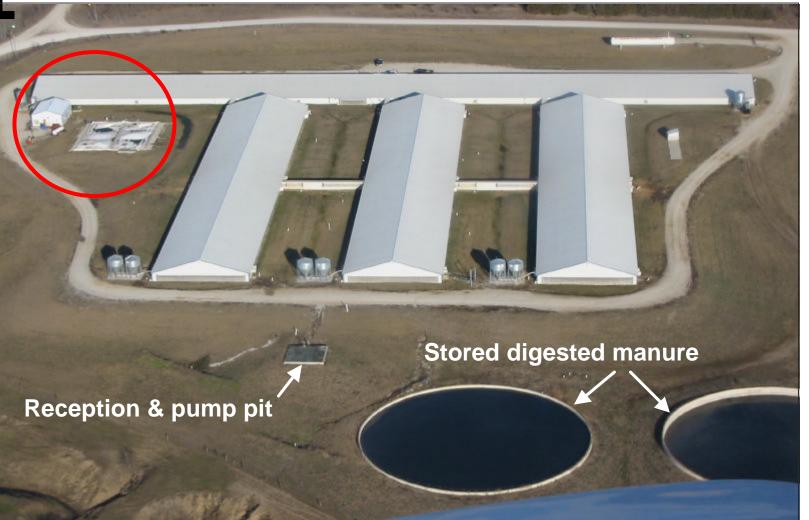
Construction

- Mixed digesters may be either "hard top" or "soft top"
- Shape can be rectangular or circular
 - Round designs may be easier to mix
 - Rectangular don't need special length/width ratio like plug flows
- Concrete or steel
 - Must be insulated in cold climates

Mixing

Ideally mixing would be continuous

- Keeps microbes into contact with nutrients
- Requires a lot of energy
- Periodic mixing
 - Digesters respond quickly after mixing or feeding
 - Over-designed mixers provide safety factor against solids settling


Primary Concerns

- Additional mechanical equipment required for mixing
 - More \$\$ to construct
 - More maintenance/management requirements
- Solids accumulation if mixing or discharge designa are inadequate
- Struvite accumulations
 - Foul pumps & pipes

Heating

- Uniform heat is necessary throughout digester volume
 - Preheat not necessary or advantageous as it is for plug flow
 - Mixing while feeding is good management practice to rapidly warm incoming manure

Iowa Mixed Digester

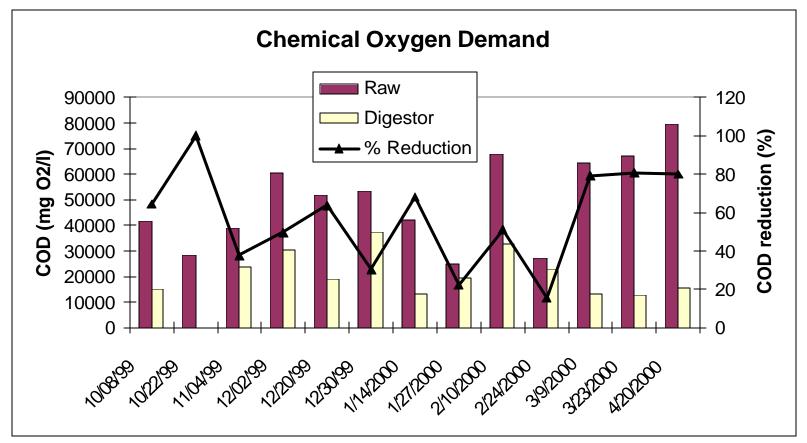
Iowa Mixed Digester

Iowa swine digester

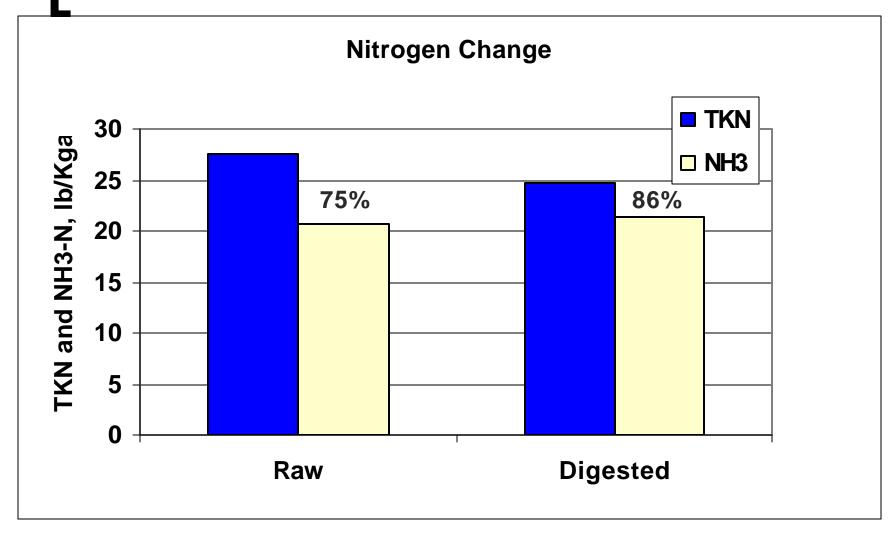
- Mixed morning and night for ~ 1 hour each time
- Fed in the morning during the mixing cycle
- Manually activated pumps to provide feed

Performance

- Loading rate
 - Gal manure fed = 540,000 gal/mo.
 - 18,000 gal/day
 - 3.6 gal/sow-day
 - 1.5 kg VS/M³-day
 - 90 lb VS/1000 ft³ (~10X lagoon loading rate)

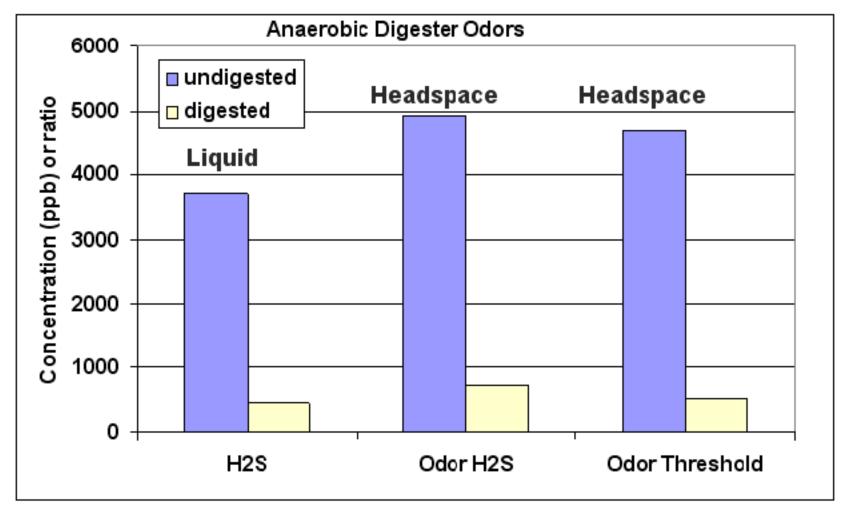

Performance

Energy production


- Biogas generated = 588,000 cu ft/mo.
 - 19,600 cu ft/day (70% methane)
 - 3.9 cu ft/sow-day
- Electricity = 24,500 Kwh/mo.
 - 816 kwh/day
 - 163 watt-hr/sow-day
 - 6.8 watts/sow
- Generator run time 80% first 6 months

Performance - COD

Average COD reduction for Iowa CSTR = 60%



Performance – N Change

Performance – Odor Reduction

Odors reduced ~ 90%

Summary – Mixed Digesters

- Useful for moderately thick manure
 - Use if manure's not thick enough for plug flow
- Additional mechanical requirements
 - maintenance and good management very critical
 - Iowa unit has been challenging to maintain
- Good COD & VS reductions
- Odor concentrations are reduced
- Manure is still not "releasable" quality