BIOGAS TECHNOLOGY FOR POVERTY REDUCTION AND SUSTAINABLE DEVELOPMENT

B P NEMA Principal Scientist

Central Institute of Agricultural Engineering (INDIAN COUNCIL OF AGRICULTURAL RESEARCH) Bhopal 462038 INDIA Commercial Sources of Energy Electricity, HSD, kerosene, LPG, natural gas, coal, etc. - have medium to large subsidy

Renewable sources of Energy Solar Photo-Voltaic, solar thermal, biogas, biomass, wind etc -also have subsidy / incentives, but these are not attractive

Important sources of renewable energy

- Solar energy Wind energy
- Tidal energy Ocean energy
- Geothermal energy

- Hydro power Biomass energy

Biomass Conversion Processes

Thermo-chemical conversion [ii] Biological conversion

Important Substrates

- Common animal dung
- Dry crop residues pretreatments
- Poultry litter, pig manure
 CH₄ yield 100-200% higher than Cow dung
- Fruits & vegetable waste
 Kitchen & Dining Hall Waste
- Agro-processing waste/effluent
- Energy crops

Important negative points

- High investment : Rs 6000-3000/m³
- High water requirement
- Management of digested slurry
- CO₂ contents is very high, 40-50%, affects engine operation
- * High sensitivity to temp. variations

National Programme on Biogas Development

Objective :

Promotion of Family Type BGP

Designs :

- 1. Fixed dome; Deenbandhu, Janta
- 2. Floating dome; KVIC

No. of plants set-up: 3.27M (potential 12 M)

Community / Institutional BGPs

- 15 85 m³ Capacity 1.0
- No. installed 3075 :
- Major cause of failure : Management problems

Animal dung

Annual production \approx 615.6 MT

- Cakes : 300.0 MT
- Composting : 93.0 MT
- Biogas : 40.0 MT
- Not collected : 182.6 MT

Potential Available

- No. of Family size BGPs : 12 M
- Save 200 MT of fuel wood & Produce 400 MT manure/year
- Achievement, No.of BGP Installed = 3 M

Cattle dung based systems

- IS 9478:1989 family size biogas plant – code of practice (capacity 1-10 m³)
- Floating dome KVIC, Pragati
- Fixed dome Janta & Deenbandhu
- Institutional/community BGP
 Capacity upto 85 m³, multiple units
 Floating dome KVIC type
- Familiar technology
- Gas yield 70-240 I/kg TS (55% CH₄)
- H₂S scrubbing not needed for engine use

Anaerobic Digestion

Purposes / Benefits

- Produce clean & easy to use fuel
- Nutrient reclamation : Nutrients are not destroyed but made more available to plants
- Waste stabilization
- Pathogen inactivation

Community Biogas Plant of 85 m³ capacity

Working satisfactorily since 1988 at Islamnagar, gas being used by 50 farm families, average gas yield : 50-70 m³ per day

Kitchen Waste Based Biogas Plant installed at Shegaon Capacity 10 m³

Horizontal Flow Field Plant

- Digester cap. : 9 m³ , RT : 50 d
- Feed rate : 80-90 kg/h
- TSC fresh substrate : 20-30 %
 Feed slurry : 10%
- Average gas yield : 4-5 m³ / day
- Power rating of shredder : 1.5 kW
- Cost of plant : Rs 60,000
- Plants working well since 2001
- Technical bulletin published
- Plants installed at 5 more locations

Horizontal Flow Biogas Plant installed at Zonal Training Centre, Western Railway, Udaipur Capacity 6 m³, feed 80-100 kg KDW/d, Gas Yield 154-226 I/kg dm

Biphasic system for VMW

- Separate acid & methane reactors.
- Optimum parameters may be maintained easily.
- Obviates problems of pretreatments, scum breaking and slurry flow.
- 100 kg/d system developed and evaluated.
- Gas yield 1.5 2.0 m³/d (methane 70%).

Biphasic Plant for Vegetable Market Waste Capacity : 100 kg / d

Biphasic Plant installed at Farmer's Site near Dharwad

Substrate – common weeds

6 m³ Pant Tarai Biogas Plant installed at Farmer's Site

Solid-state digesters for Cattle dung (AICRP on RES)

- No water required, Gas yield up to 30% more
- Easy handling of digested slurry (TS: 9- 10%)
- Cost : nearly same, Capacity : 2,3 &4 m³
- 30 plants in villages, Design submitted to MNES
- Scaling-up under progress

Line Diagram of Janta Biogas Plant

Line Diagram of Modified Janta Biogas Plant for Solid-state Digestion of Cattle Dung

Modified Janta Biogas Plant for Solidstate Digestion of Cattle Dung

EXCAVATING OF PILE HOLES

REINFORCEMENT FOR PILE FOUNDATION

REINFORCEMENT FOR PILE CAP

PREPARATION FOR RCC PILE CAP

CONSTRUCTION OF RCC PILE CAP

BRICK MASONARY WORK

BRICK MASONARY WORK

DIGESTER WITH INLET PIPE

DIGESTER WITH OUTLET

CONSTRUCTION OF DOME

A COMPLETE VIEW WITH ALL COMPONENT

PLASTERING OF BIO GAS PLANT

PLASTERING OF BIO GAS PLANT

SOLID STATE DIGESTION

Reduced digester volume

Higher gas production

Better digested slurry management

MAJOR MODIFICATIONS

- Replacing the inlet tank with a 30 cm dia RCC pipe fixed at an angle of 60 ° with horizontal
- The pipe is to be projected around 90 cm above the dome of the plant and is provided with a collar on the top for easy feeding of the cow dung.
- The inside of the dome is provided with a thin layer of 1:2 cement and sand plaster for additional safety against gas leakage.
- The outlet chamber is enlarged to accommodate the total slurry displacement.
- The exit way from the digester to outlet is made to provide a smooth flow of digested slurry and to avoid any sharp bend.

Average comparative performance of Janta plant at Hisar*

Parameters	Common design	Modified plant
TSC, %	8 – 10	14 – 16
Gas yield, I / kg dm	134	205
TS degradation, %	25	37
VS degradation, %	35	49
*Weekly mean ambient temperature		9-35°C

Gas Utilization

- Thermal applications : cooking, process heat, biogas operated brooders, etc
 - Methane contents : 55 75%
 - Heat value : 4500-6300 kCal / m³
 - H₂S burns to SO₂,
 - Scrubbing needed if $H_2S > 1\%$
- Illumination : Biogas lamps;
 - 1 m³ biogas lights 60 W lamp for 6 h
 - Electricity generation route is more efficient but expensive for small applications

Important Recommendations

- Satisfactory field scale technologies are now available. Govts should encourage their refinement, commercialization & adoption at all levels.
- * Liberal support should be extended for wider adoption of following teches:
 - Fixed dome solid-state biogas plants
 - Kitchen & dining hall waste based biogas plants
 - Biphasic biomethanation system for vegetable market waste

