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A B S T R A C T

Biogas has the potential to satisfy the clean energy needs of millions of households in under-served and energy-
poor rural areas, while reducing both private and social costs linked to (i) fuels for household cooking, (ii)
fertilizers, (iii) pressure on forests, and (iv) emissions (e.g., 𝑃𝑀2.5 and methane) that damage both household
health and global climate. While the literature has focused on identifying these costs, less attention has been
paid to household preferences for biogas systems — specifically what attributes are popular with which
types of households. We conduct a discrete choice experiment with 503 households in rural Odisha, India,
to better characterize preferences for different attributes (smoke reduction, fuel efficiency, and maintenance)
and for different cooking technologies (biogas and an improved biomass cookstove). We find that on average
households value smoke reduction and fuel efficiency. Willingness to pay (WTP) a premium for the improved
biomass cookstove is low, while willingness to pay a premium for biogas is high. Nonetheless, WTP varies
by the type of previous experience with biogas (e.g., good or bad experience) and with time and risk
preferences of households. While risk-averse and impatient respondents have lower WTP for the improved
cookstoves, previous experience with biogas attenuates this gap. These findings suggest that biogas uptake
and diffusion could be improved by complementing existing subsidies with technology trials, good quality
products, maintenance, and customer services to reduce uncertainty.

1. Introduction

Burning polluting fuels in inefficient stoves with poor ventilation
is still a common practice, especially among rural households in low-
and middle-income countries (LMICs). While reducing energy poverty
and increasing primary reliance on clean technologies is a key target
of the UN Sustainable Development Goal (SDG) 7, it is estimated
that 2.8 billion people still lack access to clean cooking fuels and
technologies as of 2018 (IEA et al., 2020).1 This persistent trend has
detrimental consequences for millions of households, from respiratory
and cardiovascular health risks (Gordon et al., 2014; Jeuland et al.,
2015b; Lewis et al., 2016; Rao et al., 2021) and expense of scarce
time to find fuel (Tinker, 1987; Krishnapriya et al., 2021) to broader
externalities such as forest degradation (Bensch and Peters, 2013), local
pollution, and climate change (Jeuland and Pattanayak, 2012; Pant
et al., 2014). Several of these burdens fall disproportionately on women
and children (World Health Organization, 2016; Krishnapriya et al.,
2021). Part of the reason these problems persist is because energy
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1 The SDGs are a United Nations initiative that delineate development targets for 2030; SDG7 relates to ‘‘ensuring access to affordable, reliable, sustainable,
and modern energy for all’’.

poverty makes it difficult for people to escape socio-economic poverty,

given the channels discussed above (World Health Organization, 2016;

Krishnapriya et al., 2021; Churchill et al., 2020; Thomson et al., 2017).

In turn, the poor face barriers to adopting and using clean energy. This

in-built negative reinforcement makes energy poverty an especially

pernicious problem (Sovacool, 2012; Herington et al., 2017). While

the energy poverty literature in high-income countries tends to focus

on electrification, heating, and cooling, cooking remains an essential

component of energy demand by the poor in LMICs (Daioglou et al.,

2012). If we can better characterize demand for clean cooking tech-

nologies by the rural poor – as this paper attempts – we could better

support policies to end energy poverty (Sovacool, 2014; Paudel, 2021;

Nussbaumer et al., 2013).

Our study was conducted in India, a global hotspot for pollution-

laden cooking practices and energy poverty. Millions of Indians are

poor and not surprisingly almost one-third of the population still cooks

primarily with dirty fuels and technologies. This situation is even worse
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in rural India where approximately half of the population is reliant on
dirty fuels (World Health Organization, 2021). In some cases, the use of
cleaner cookstoves has even declined over time, often because of insuf-
ficient maintenance or repair or supply constraints on the fuel (Hanna
et al., 2016; Pattanayak et al., 2019). Naturally, this situation has led to
several waves of policies, programs, and projects to promote improved
cookstoves (ICS) and clean(er) fuels. National ICS programs in India
have been around since the 1980s, including the National Project on
Biogas Development (which started in 1981–1982) and the National
Program on Improved Chulhas (1985–2002). This was followed by the
National Biomass Cookstove Initiative in late 2009 and more recently
by the Pradhan Mantri Ujjwala Yojana (PMUY) program in 2015 (Bond
and Templeton, 2011; Mani et al., 2020).

Yet, many of these improved cookstove policies and programs have
been criticized for attempting to supply solutions in a top-down re-
mote engineering way, without understanding local demand for dif-
ferent technologies and services, which in some cases could simply be
low (Mobarak et al., 2012; Pattanayak et al., 2018). By subsidizing the
upfront costs for the poorest segments of the population, the recent
PMUY scheme has dramatically increased the number of households
with liquefied petroleum gas (LPG) connections in India. Nonetheless,
this achievement has not yet translated into sustained use of cleaner
fuels because LPG refills remain unaffordable for a substantial share of
the population, LPG supply networks are limited, and solid fuels (such
as firewood, agricultural residues, and dung cakes) are more readily
available (Mani et al., 2020; Gould et al., 2020; Kar et al., 2019; Sharma
et al., 2019; Gould and Urpelainen, 2018; Swain and Mishra, 2020).
Many barriers to eradicating energy poverty in cooking continue to
exist.

There is a relatively small but growing applied micro-economics
literature on household energy demand and energy poverty in LMICs
(Takama et al., 2012; Van der Kroon et al., 2014; Jeuland et al., 2015b,
2019; Berkouwer and Dean, 2019; Jagger et al., 2019, among others).
This literature has focused on low uptake and low willingness to pay
(WTP) for ICS. This literature suggests that the barriers to adoption and
sustained use include affordability, liquidity and credit constraints, lack
of awareness of the negative impacts, supply chain bottlenecks, and
intra-household bargaining and gender-related issues (Beltramo et al.,
2015; Bensch et al., 2015; Miller and Mobarak, 2015; Mohapatra and
Simon, 2017). Yet, we still do not have a full picture of which types of
households demand which types of technologies and services, acknowl-
edging that any technology is a complex bundle of attributes. Some
of the new technologies are simply not appropriate for the context in
which they are introduced, for example in terms of households’ needs,
size, cultural background, and type of food cooked. An economics
interpretation of this mismatch is that households have heterogeneous
preferences for cooking and cookstoves, even within seemingly homo-
geneous villages (Pattanayak et al., 2018). One-size-fits-all solutions are
unlikely to exist and care must be used to understand the specific needs,
tastes, and constraints on the ground (Van der Kroon et al., 2014; Pant
et al., 2014; Rehfuess et al., 2014; Pattanayak et al., 2019).

In this study, we build on these strands of literature, but avoid
duplication by focusing on household preferences for specific attributes
and for an understudied cooking technology — biogas digesters (or
biogas for short). Specifically, we make three contributions. First, while
most of the literature on clean cooking has focused on biomass ICS and
LPG, we focus on family-size biogas systems for cooking (i.e., household
‘self-produced’ biogas) because it has the potential to deliver impor-
tant co-benefits and positive externalities, especially in rural contexts
with a hot and humid climate. Family-size biogas systems are used to
transform livestock manure and other agricultural waste into gas for
cooking, which can then be used in a similar way to LPG and burned
without producing smoke (Bond and Templeton, 2011). Further details
on the technology are presented in Section 3.1. An important advantage
with respect to LPG is that biogas systems do not use fossil fuels and are
therefore (a) not affected by the price of oil nor its supply chain and (b)

not a source of climate forcing. Moreover, this technology allows safer
waste disposal and provides fertilizer as a byproduct. As summarized
in Section 3.1, various national and state government policies have
attempted to promote biogas, but the economics research basis for the
policy has been weak. The small economics literature on biogas has so
far focused on Nepal (Pant et al., 2014; Somanathan and Bluffstone,
2015; Meeks et al., 2019), Indonesia (Bedi et al., 2017), Rwanda (Bedi
et al., 2015), and Ethiopia (Kelebe et al., 2017). These studies have
typically focused on the benefits and/or adoption of biogas. Our study
is different both because we consider the technology as a bundle
of attributes – therefore untangling household preferences for smoke
emissions, fuel requirements, and maintenance assistance – and because
we focus on how their valuation vary by experience and by time and
risk preferences.

Second, we rely on a stratified random sample to study how demand
is mediated by previous experience (positive, negative, or none) with
the biogas technology in our study site. Too many recent studies of
demand in rural areas of LMICs assume that the technology is new for
everyone, when in reality the landscape is littered with past trials and
partial successes. This introduces heterogeneity in demand, for example
through learning. Understanding the role of both positive and negative
experiences is therefore crucial because technology adoption and diffu-
sion is a dynamic process. As cookstoves start aging and require repair,
some benefits are realized and others are not, leading to sustained use
or abandonment. Therefore, in our study site, we look at households
that have had a good experience (i.e., whose system has never broken
down), households that have had a bad experience (i.e., whose system
has malfunctioned, for example because the structure cracked or they
have had pipe or inlet/outlet problems), and finally households that
have no experience with the technology.

Third, we look at how risk and time preferences correlate with tech-
nology demand. Learning-by-doing and technology trials can provide
information, improve skills, and reduce risk, and have been shown to
influence technology adoption. This is particularly true because most
beneficiaries are risk-averse and/or impatient (Cameron, 1999; Marra
et al., 2003; Foster and Rosenzweig, 2010). For example, Atmadja
et al. (2017) show that adoption of environmental health technolo-
gies (e.g., cookstoves, toilets, treated bed-nets) depends on whether
households are impatient or patient. Likewise, Jeuland et al. (2020)
find that ICS use is correlated with risk aversion. Nevertheless, most
empirical studies on these aspects of demand in LMICs tend to focus on
agriculture rather than energy choices. Thus, following Jeuland et al.
(2015a, 2019), we study how demand is mediated by risk aversion
and impatience. Specifically we test the hypotheses that risk-averse
and impatient households have lower demand for unfamiliar new ICS,
but that previous experience with biogas modifies this lower demand.
While this interaction has been suggested in other studies, we are not
aware of any that test it explicitly.

We followed the design in Jeuland et al. (2015a) and implemented
a labeled discrete choice experiment (DCE). Our DCE consisted of a
series of choice cards, in which respondents were presented with three
alternative options: gobar gas (biogas plant), biomass rocket stove, and
the traditional chulha as the outside option. (See Figure 4 in Appendix
A).2 Each alternative technology is presented as a combination of price,
maintenance assistance, smoke emissions, and fuel requirements. The
DCE was conducted with 503 households in rural Odisha, India. We
stratified our sample by households with different types of experience
with biogas systems.

2 Gobar gas is a family-size biogas plant for cooking. The biomass rocket
stove is typically manufactured using metal and burns firewood or other
biomass in a combustion chamber to improve the efficiency of the combustion
process and reduce smoke emissions. The local traditional chulha is a self-built
mud structure for burning solid fuels such as firewood, agricultural residues,
dung cakes (dry manure), and other biomass.



Energy Economics 107 (2022) 105796

3

M. Talevi et al.

Section 2 presents the conceptual framework for the analysis and
estimation models. Section 3 provides background on the study area,
the cookstoves used in the DCE, the sample stratification, the modules
to elicit risk aversion and time preferences, and the design of the DCE.
Section 4 discusses the results of the regression analysis of the DCE in
terms of WTP for changes in attributes of the cookstove. We also report
the estimated premium for biogas by different ‘types’ of households.
Section 5 summarizes our study and the main policy implications.

2. Conceptual framework

In this paper, we study how the WTP for clean energy for cooking
varies depending on technology type and cookstove attributes — smoke
emissions, fuel requirements, and availability of maintenance assis-
tance. We then look at how respondent experience and characteristics
(risk aversion and time preferences) moderate demand. To do this, we
use a random parameter logit model that allows us to consider unob-
served heterogeneity at the individual level, as described in Section 2.2.
Additionally, we deploy interaction terms to test specific sources of
observed heterogeneity, as described in Section 2.3.

2.1. The random utility model

The theoretical framework for our study is the random utility
model (Manski, 1977), where household 𝑖’s utility can be decomposed
into a non-stochastic indirect utility component 𝑉𝑖(⋅), which depends
on the cookstove chosen, and a stochastic term 𝜀𝑖, which captures
idiosyncratic tastes or shocks. Following Lancaster (1966), we consider
the cookstove as a bundle of attributes, each of which contributes to
the household utility. In particular, we assume that the indirect utility
of each stove 𝑗𝑡 (that is, technology 𝑗 as described in choice-card 𝑡)
is a function of observable characteristics of the stove included in
vector 𝑋𝑖𝑗𝑡 – price, maintenance assistance, smoke emissions, fuel re-
quirements, and technology type (biogas, rocket stove, and traditional
chulha) offered to individual 𝑖3:

𝑈𝑖𝑗𝑡 = 𝑉 (𝑋𝑖𝑗𝑡) + 𝜀𝑖𝑗𝑡. (1)

We start by specifying the non-stochastic indirect utility component
in ‘preference space’ (Train and Weeks, 2005):

𝑉𝑖𝑗𝑡 = 𝛼′
𝑖
(𝑋𝑖𝑗𝑡) − 𝛽

𝑝𝑟𝑖𝑐𝑒

𝑖
(𝑝𝑟𝑖𝑐𝑒𝑖𝑗𝑡) (2)

where the vector 𝛼𝑖 consists of the marginal utilities of non-monetary
characteristics (attributes and technology-specific premiums) and 𝛽

𝑝𝑟𝑖𝑐𝑒

𝑖

is the marginal utility of the monetary characteristics (price). These
parameters characterize the household preferences. The marginal util-
ity parameters can then be translated into a marginal WTP for the
attribute or for the technology-specific premium by dividing them by
the coefficient of the price (i.e., the marginal utility of money):

𝑊 𝑇𝑃 𝑙
𝑖
= 𝛽𝑙

𝑖
=

𝛼𝑙
𝑖

𝛽
𝑝𝑟𝑖𝑐𝑒

𝑖

(3)

where 𝑙 represents an attribute or a technology type, 𝑙 ∈ {maintenance,
fuel efficiency, smoke, biogas, rocket stove}.

We can therefore reparametrize the utility function from the prefer-
ence space into the ‘WTP space’ (also called ‘surplus model’), so that the
coefficients are directly interpreted as WTP (Hole and Kolstad, 2012;
Scarpa et al., 2008; Sonnier et al., 2007; Train and Weeks, 2005):

𝑉𝑖𝑗𝑡 = 𝛽
𝑝𝑟𝑖𝑐𝑒

𝑖
[𝛽′

𝑖
(𝑋𝑖𝑗𝑡) − 𝑝𝑟𝑖𝑐𝑒𝑗𝑡] . (4)

In principle, different individuals might have different parameters
and we allow for this heterogeneity in two ways. First, by using a

3 In the discrete choice experiment, individuals are asked to choose their
preferred cookstove among 3 shown on a card; they are shown a total of 5
cards and asked to make a choice for each card.

random parameter logit model (RPL) we estimate an entire distribution
for each parameter to account for unobserved heterogeneity in the sam-
ple. Second, we account for specific sources of observed heterogeneity
by estimating different parameters for different types of respondents
through interaction terms. We then test whether the estimated WTP
are indeed statistically different between types.

As non-traditional technologies are new and tend to have much
higher upfront costs compared to the traditional chulha, their net bene-
fits might be unclear and the returns from investing in these cookstoves
uncertain. Thus, what we have in mind is a learning process — those
who have previously used the new technology will better understand
the potential hidden costs and benefits of adopting it relative to house-
holds with no experience. Our main hypothesis is that households who
have already used a biogas stove might have a clearer idea of the
direct and indirect costs and benefits, the likelihood of their realization,
and their time frame. In the case of biogas, costs and benefits include
the time required to collect, feed, and stir the manure into the biogas
digester, the need for careful cleaning and correct use of the system, the
need for specialized maintenance and repair, and the amount of energy
that can be produced given the available livestock. Additional indirect
benefits of biogas are the possibility of using the byproduct slurry
in place of purchased fertilizer and the health benefits from reduced
smoke emissions and improved waste disposal (see Section 3.1). While
some of these elements are captured by the attributes of our DCE
(fuel-related time requirements, availability of maintenance assistance,
smoke emissions), the others are not and should be captured by the
biogas-specific premium. We might therefore expect that households
who have no experience with biogas have a different WTP for the
biogas-specific premium compared to households who have experience
with the technology. In turn households who experienced malfunctions
may have a lower WTP than those who have had a smooth expe-
rience, as each group adjust their expectations of costs and benefits
accordingly.

Because the landscape is littered with past trials and partial suc-
cesses, some households are better informed and this reduces their
uncertainty. To delve more into this hypothesis, we also consider time
and risk preferences as indicators of aversion to uncertainty. That is, we
test if more risk-averse and more impatient households have a lower
WTP for the improved yet less familiar technologies and the attributes.
Further, we also test whether experience with a specific technology
moderates the influence of time and risk preferences.

2.2. Random parameters: Accounting for unobserved heterogeneity

McFadden (1981) shows that when the stochastic term 𝜀𝑖𝑗𝑡 follows
an i.i.d. type-one extreme value distribution and households choose
the alternative that maximizes their utility in each choice-task, the
probability that an alternative is chosen among all the alternatives in
a given choice-task 𝑡 is given by the conditional logit model (CL):

𝑃𝑟(choice 𝑗 = 𝑘 by 𝑖 in task 𝑡) = 𝑃𝑟(𝑈𝑖𝑘𝑡 > 𝑈𝑖𝑗𝑡 ∀𝑗 ≠ 𝑘) =
𝑒𝑉 (𝑋𝑖𝑘𝑡 ,𝛽)

∑𝐽

𝑗=1
𝑒𝑉 (𝑋𝑖𝑗𝑡 ,𝛽)

(5)

where the probability of choosing an alternative over the others is a
function of the characteristics of the alternative itself, but also of the
characteristics of all the other available options. In this case, 𝑗 ∈{biogas,
rocket stove, traditional stove}.

This model can then be estimated using maximum likelihood, but
it relies on two particularly restrictive assumptions: independent and
identically distributed (i.i.d.) error terms and independence of irrele-
vant alternatives (IIA). The latter has often been found to be violated
when tested in real-life decision-making situations, while the former
is especially unrealistic when the same respondent makes repeated
choices – as in the DCE analyzed in this paper – and decisions are
therefore likely to be correlated (Lancsar et al., 2017).
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For this reason, we relax these assumptions and use a random
parameter logit model (RPL) introduced by Revelt and Train, 1998)
instead. The RPL has been commonly used to analyze DCE data in
studies of transportation (Greene and Hensher, 2003), health (Hole,
2008), environment (MacKerron et al., 2009), and energy (Van der
Kroon et al., 2014; Jeuland et al., 2015a), among other applications.

The RPL allows us to consider heterogeneity of preferences and
tastes in two ways. First, different households are allowed to have
different preferences by modeling the WTP 𝛽 as a random parameter
with density function 𝑓 (𝛽|𝜃) rather than as a fixed parameter. The
density function is characterized by the vector of parameters 𝜃 such
as the mean and standard deviation of the assumed distribution that
are estimated in the regression model. In this way, we can model
unobserved heterogeneity. Second, following typical practice in the
DCE literature, we consider heterogeneity in the demand for the differ-
ent attributes and technologies by interacting indicators for different
characteristics of the respondents (for example risk aversion, time
preferences, and level of experience) with indicators for the levels of
the attributes and the technology label.4 These interactions represent
the observed heterogeneity in our model. The combination of these two
elements allows us to estimate the parameter distributions of different
groups of people. Thus we can not only test the difference in the mean
WTP, but also compare the estimated WTP distributions.

To obtain an expression for the probability of each choice under
the basic RPL, the previous expression needs to be integrated over the
distribution of the unknown random parameter:

𝑃𝑟(choice 𝑗 by 𝑖 in task 𝑡) = ∫
𝑒𝑉 (𝑋𝑖𝑗𝑡 ,𝛽)

∑𝐽

𝑗=1
𝑒𝑉 (𝑋𝑖𝑗𝑡 ,𝛽)

𝑓 (𝛽|𝜃) 𝑑𝛽. (6)

This expression cannot be solved analytically to obtain an explicit
likelihood function to maximize, so we use a maximum simulated
likelihood approach instead (Train, 2009). This model is better suited to
capture heterogeneity of preferences across respondents, as parameters
(either some or all) are allowed to be randomly distributed across
households according to a given continuous distribution, rather than
being constrained into a single value as in the CL model. The model can
also take into account the panel structure of the data by considering the
probability that an individual makes a sequence of choices rather than
the probability of a single choice:

𝑃𝑟(sequence of choices 𝑗 by 𝑖 in task 𝑡)

= ∫
𝑇∏

𝑡=1

𝐽∏

𝑗=1

[
𝑒𝑉 (𝑋𝑖𝑗𝑡 ,𝛽)

∑𝐽

𝑗=1
𝑒𝑉 (𝑋𝑖𝑗𝑡 ,𝛽)

]I𝑖𝑗𝑡(𝑘=𝑗)

𝑓 (𝛽|𝜃) 𝑑𝛽 (7)

where I𝑖𝑗𝑡(𝑘 = 𝑗) is an indicator function that equals 1 if household 𝑖

selected alternative 𝑘 = 𝑗 in choice task 𝑡 and 0 otherwise.
To estimate the model, we need to make assumptions on the distri-

bution of the coefficients. Estimating the model in WTP space means
that the estimated parameters directly describe the distribution of the
WTP (Train and Weeks, 2005), so that distributional assumptions also
translate directly into implications and constraints to the WTP. This
can provide some advantages over the specification in preference space,
where WTP is calculated as the ratio of the estimated coefficients for
the attribute and for price. If both coefficients are modeled as random,
the resulting distribution of the WTP is not easily characterized, nor
are the implications of the distribution assumptions on the coefficients.
As common in the literature (Hole and Kolstad, 2012; Scarpa et al.,
2008), we use negative price in our equation and assume 𝛽

𝑝𝑟𝑖𝑐𝑒

𝑖
to be

log-normally distributed,5 while the WTP are assumed to be normally

4 The analysis is based on Jeuland et al. (2015a), as well as on the best
practices for DCE (Hauber et al., 2016; Johnston et al., 2017; Lancsar et al.,
2017).

5 The change in the sign of the price is needed because a log-normal
distribution is defined for non-negative values, while we want to constrain
the marginal utility of the price to always be non-positive.

distributed. This means that we constrain the marginal utility of price
to always be non-positive, while the sign of the WTP for the attributes
and the technology premiums is unrestricted. A negative WTP would
mean that respondents need to be compensated to accept the proposed
change in the attribute’s levels or to switch from the default stove to
the non-traditional ones. Given that attribute levels are all coded as
improvements with respect to the baseline, we might want to constrain
the WTP of the attributes to be non-negative too. Therefore, we conduct
robustness checks assuming a log-normal distribution for these WTP
and find very similar results.6 On top of the advantages of interpreta-
tion of the coefficients and of the distribution assumptions, empirical
applications have found estimations in WTP space to be more realistic.
In some cases this modeling approach has also been shown to fit the
data better (Train and Weeks, 2005; Scarpa et al., 2008; Sonnier et al.,
2007).

2.3. Random parameters & interactions: Accounting for observed hetero-
geneity

To allow for interactions, we first split the biogas technology type
(represented by a dummy indicator for whether alternative 𝑗 is a biogas
stove) into three distinct technology dummies – one for each level of
experience – indicating whether (i) alternative 𝑗 is a biogas stove that
is offered to an individual who had good experience with biogas, (ii)
alternative 𝑗 is a biogas stove that is offered to an individual who
experienced malfunctions with biogas (bad experience for short), and
(iii) alternative 𝑗 is a biogas stove that is offered to an individual with
no experience with biogas. The new vector of attributes and technologies
therefore becomes: {maintenance, fuel efficiency, smoke, biogas if good
experience, biogas if bad experience, biogas if no experience, rocket stove}.
To test the role of time and risk preferences, each element of the vector
is then interacted with an indicator for 𝑖’s type:

𝑉 (𝑋𝑖𝑗𝑡, 𝛽𝑝𝑎𝑡𝑖𝑒𝑛𝑡, 𝛽𝑖𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡) = 𝛾[𝛽′
𝑝𝑎𝑡𝑖𝑒𝑛𝑡

(𝑋𝑖𝑗𝑡) I𝑖(𝑖 = patient) +

+𝛽′
𝑖𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡

(𝑋𝑖𝑗𝑡) I𝑖(𝑖 = impatient) − 𝑝𝑟𝑖𝑐𝑒𝑗𝑡]

(8)

and

𝑉 (𝑋𝑖𝑗𝑡, 𝛽𝑙𝑒𝑠𝑠𝑟𝑖𝑠𝑘𝑎𝑣., 𝛽𝑚𝑜𝑟𝑒𝑟𝑖𝑠𝑘𝑎𝑣.) = 𝛾[𝛽′
𝑙𝑒𝑠𝑠𝑟𝑖𝑠𝑘𝑎𝑣.

(𝑋𝑖𝑗𝑡) I𝑖(𝑖 = lessriskav.) +

+𝛽′
𝑚𝑜𝑟𝑒𝑟𝑖𝑠𝑘𝑎𝑣

(𝑋𝑖𝑗𝑡)

×I𝑖(𝑖 = moreriskav.) − 𝑝𝑟𝑖𝑐𝑒𝑗𝑡]. (9)

To test our hypotheses, we use the estimated means of 𝑓 (𝛽) to
conduct a Wald test on whether the distributions of the WTP for each
characteristic have statistically different means. In particular, we wish
to test if preferences for cooking attributes and for cooking technologies
vary by whether households are impatient or risk-averse. In the case of
a relatively new technology, like biogas, risk-averse individuals should
assign a penalty because of the uncertainties linked to its novelty. At
the same time, there is also a temporal mismatch between costs and
benefits, as the price for purchasing the stove is paid in the short-
run, while fuel savings, smoke reductions, and other co-benefits of the
cookstoves are realized in the long-run.7 Following this argument, we
wish to test if experience with a technology helps reduce uncertainty
about how risky the investment is and what the payback period should
be. Therefore, we hypothesize that experience reduces the valuation
penalty that risk-averse and impatient respondents assign to biogas.
This is tested by examining how the WTP for biogas changes by risk
aversion and impatience separately by level of experience.

6 All the models in the paper are estimated in Stata 16. RPL models in WTP
space are estimated using the mixlogitwtp package described in Hole (2016),
which is based on the mixlogit package by Hole (2007).

7 Respondents with higher time discount rates (i.e., ‘impatient’) assign a
higher weight to the present and a lower weight to the future compared
to more ‘patient’ households; their net present value for the non-traditional
improved stove should therefore be lower.
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3. Background & data

3.1. Policies & technologies

Biogas has been shown to deliver substantial benefits in rural con-
texts with a hot and humid climate, typical of many parts of India.
These benefits include not only reduced smoke emissions from cook-
ing, cheaper energy, and reduction in the use of fuelwood, but also
improved waste disposal (and therefore sanitation) and production of
high-quality fertilizer for agriculture as a byproduct of the anaerobic
digestion (Brown, 2006; Chen et al., 2010; Hazra et al., 2014; Insam
et al., 2015; Lewis et al., 2016).

Bond and Templeton (2011) give an overview on the use of family-
size biogas plants in LMICs, including details on policies implemented
in India and China to promote biogas. We draw on this report to
briefly summarize how a biogas digester works since readers are likely
less familiar with this technology compared to other ICS or chulhas.
In the simple fixed-dome design used in our study area, the digester
consists of a pit outside the house, lined with bricks and cement and
covered by a dome of the same materials (see Figure 4). The structure
is custom-made on the spot by a mason. A mix of manure and water
in fixed proportions is then regularly fed into the digester and let to
ferment. This process releases methane gas, which is funneled into the
gas burner through pipes and to be burnt for cooking. By capturing the
methane into the digester and burning it, this process avoids methane
leaks from manure into the atmosphere, therefore reducing the release
of this greenhouse gas. Methane is clean-burning and, as long as the
household has access to manure, the fuel for this technology is basically
free. However, the system requires constant maintenance and cleaning
and a reliable feed source, so there is an expense in terms of time
and resources required to keep livestock, which is still a barrier for
poor households (Walekhwa et al., 2009; Sun et al., 2014). The slurry
that remains in the digester after the fermentation process can be used
as fertilizer in agriculture, replacing commercially bought fertilizers
and providing better performance than using (unfermented) manure.
Moreover, this process provides safer waste disposal.

In India, the development and adoption of biogas in rural areas has
been supported since the 1980s with the National Project on Biogas
Development (NPBD) and subsequent national-level programs such as
the National Biogas and Manure Management Programme. Further,
Indian states also participated in information and subsidy schemes.
These are provided by the Odisha Renewable Energy Development
Agency (OREDA) in our study area, as confirmed by the surveyed
households. Biogas development in India targets not only cooking but
also lighting and other energy uses that can be fueled by biogas (Shukla,
2007). The scarce literature on biogas in this setting largely comprises
case studies of (i) successes of biogas development programs (Rao and
Ravindranath, 2002; Ravindranath and Balachandra, 2009; Vijay et al.,
2015), (ii) barriers to bioenergy diffusion (Bhat et al., 2001; Raha et al.,
2014; Reddy, 2004), and (iii) commercialization and diffusion of biogas
in urban areas and at the industrial level (Mittal et al., 2018).

3.2. Survey & sample

Data for this paper come from a survey administered to 503 house-
holds in 42 villages in 8 different districts of Odisha, India.8 The
survey was conducted between November 2011 and February 2012.
Several co-authors of this paper designed and supervised the initial
data collection. The household sample was stratified in four groups:

8 Specific districts include Angul (60 households), Cuttack (84), Jagats-
ingpur (60), Jajpur (48), Jharsuguda (96), Keonghar (60), Sambalpur (84),
and Sundargarh (11), where numbers of household subsamples are listed in
brackets. These districts capture the geographical and cultural diversity of the
state.

groups 1 and 2 are households that have working and broken biogas
digesters respectively, households in group 3 do not have a biogas but
have at least one other type of non-traditional cookstove (for example
LPG or electric), and group 4 includes households who only have the
traditional chulha (biomass cookstove). Note that while households in
group 1, 2, and 3 have at least one improved cookstove, 88% of them
also have a traditional chulha, as fuel stacking is common in the area.
To ensure comparability and similar contextual factors for all groups,
the enumerators attempted to interview 3 households from each group
in each village, although in a limited number of cases this was not
possible. Thus, the final sample includes 503 households: 133 are in
group 1 (working biogas plant), 120 are in group 2 (broken biogas
plant), 121 are in group 3 (other clean stoves), and 129 are in group 4
(traditional stoves only).

The interview was conducted with the head of the household in
most cases. The survey collected data on household assets – such as
land and livestock holdings – and other socio-economic characteristics.
Detailed questions were asked about cooking, in particular the types
of cookstoves available in the house and the time and resources spent
in different cooking-related activities. A detailed summary of house-
hold characteristics and characteristics of biogas plants is provided in
Appendix C with tables of descriptive statistics (Tables 6, 7 and 8).

Bond and Templeton (2011) estimate that to satisfy the energy
demand of a household, the digester should be between 2 and 10 m3

and at least five cows are needed to provide enough gas for cooking two
meals a day for a family of five. All the biogas plants in the sample are
fixed-dome (Deenbandhu model), with a capacity of either 1 m3 (15%
of the households) or 2 m3 (85% of the households) and 65% of the
households have less than 1 head of cattle per household member. This
suggests that biogas in our study area might be insufficient to cover
the full demand of energy for cooking and this might be one of the
reasons why households keep using traditional stoves even when the
biogas plant is working. This issue was highlighted in focus groups
in the study area during the preparatory stage of the study (Hazra
et al., 2014). Most plants were installed between 2004 and 2010, with
some going back as far as the 1980s. Everyone in the sample received
subsidies for the construction of the plant, ranging from 17% to 82%
of the overall cost; the vast majority (91%) reported receiving them
from OREDA and the remaining 9% from other support schemes from
the Government of Odisha. OREDA also played an important role in
spreading awareness about the technology, as 72% of the households
heard about the program from them, while 22% found out through the
person who installed the plant and 6% through family or friends.

3.3. Levels of experience

The sample stratification described above together with information
from the survey allows us to classify households in three different levels
of experience with biogas. We classified households as having had a bad
experience if their biogas plant is currently broken or have experienced
malfunctions in the past. We classified households as having had a good
experience if their biogas plant has never broken down. The rest of the
households are classified as having no experience.

3.4. Factors associated with cookstove ownership & biogas functionality

We conduct a descriptive analysis of what factors and characteristics
are associated with the type of cookstoves owned and the level of
experience with biogas. Detailed information and robustness checks
are presented in Appendices C, D and E. While we use multivariate
regressions to analyze patterns, these findings should be treated as
descriptive associations. The insights obtained can nonetheless guide
the interpretation of the results of the DCE analysis.

The following patterns emerge: We find that biogas is more likely
to be used by households in the lower and middle part of the income
distribution and by households who have more livestock, while higher
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income households tend to use other clean cookstoves (such as LPG
and electric). The poorest households tend to have only a traditional
chulha (Table 10). The association between livestock and ownership of
a biogas plant is expected, as a functional biogas plant needs a reliable
feed of manure. This is a barrier for poorer households, who may not
have the resources to purchase and keep large animals (Walekhwa
et al., 2009; Sun et al., 2014). Robustness checks in Appendix E are
conducted to control for differences in livestock availability and income
level between the groups. Focusing on the households who own a
biogas plant, we find that malfunctions and failures are correlated with
the age and size of the biogas system, as well as time spent on operating
and cleaning the systems.9 We do not find major differences in observed
socio-demographic characteristics across households with good and bad
experiences (Table 9).

3.5. Time & risk preferences

We elicited risk preferences and time preferences using two hypo-
thetical dichotomous choice exercises. In each exercise, we asked the
respondent to imagine that someone is offering them a gift in the form
of an amount of money and reminded them that there are no right or
wrong answers, just personal preferences. (See Appendix B for the script
used for these questions).

In the time preference module, the respondent chose between a
sooner smaller amount and a later larger amount. The first question
asked whether they prefer a smaller amount of money (1,000 INR)
tomorrow or prefer to wait for 12 months to receive double that amount
(2,000 INR).10 If they chose the smaller sooner amount, they were asked
a second question in which the later larger amount was increased to
2,500 INR. If they chose the later larger amount at first, they were
asked a second question in which the later larger amount was decreased
to 1,500 INR. Using these sets of responses, we create an impatience
dummy with value 1 if the respondent chose the sooner smaller amount
in both questions. Sixty six percent of the our study sample are in this
category.

The risk aversion module was similar, asking the respondent to
choose between a smaller safer or a larger riskier amount. Specifically,
they chose between a certain amount now (500 INR) or to flip a coin
for the chance to receive a larger amount (1,200 INR) if it is heads but 0
if it is tails.11 The expected value of this option was therefore 600 INR.
If they preferred the safer option first, next they were asked to choose
between the same safer smaller option or an uncertain amount with
a higher expected value than the first choice. That is, to flip the coin
to receive 1,250 INR if it is heads or 250 INR if it is tails, an expected
value of 750 INR. If they instead preferred the riskier option in the first
question, they were then asked to choose between the certain 500 INR
or to flip a coin for a 1,000 INR if heads but 0 if tails (the expected
value is 500 INR, the same as the certain amount). The responses are
then used to create a risk aversion dummy with value 1 if the respondent
chose the safer smaller amount in both questions. Sixty four percent of
our study sample are in this category.

9 Bond and Templeton (2011) also highlight age of biogas digester as a key
predictor of performance.
10 The conversion rate used in the paper to translate 2011–12 prices into
present day values is: 1,000 INR at the time of the study (2011–2012) is
equivalent to 1,850 INR in 2021. To convert the values into present day USD:
74 INR is equivalent to 1 USD (all in 2021 terms). Therefore the sooner smaller
amount of 1,000 INR offered in the survey is equivalent to 25 USD in present-
day terms. For reference, in the sample the median monthly expenditures
excluding food, a proxy for the household disposable income, was 1,350 INR,
which is equivalent to 2,500 INR or 34 USD in present-day terms. So the
amounts offered were substantial.
11 The amount of 500 INR offered in the survey is equivalent to 925 INR or
12.5 USD in present-day terms; 1,200 INR is equivalent to 2,220 INR or 30
USD in present-day terms.

For both risk aversion and time preferences, we also create a 4-
level ordinal index with the four possible combination of decisions and
conduct robustness checks using these measures instead of the dummy,
which confirm the results (Tables available on request). While there is
considerable overlap between risk-averse & impatient (54% of overall
sample), some respondents are risk-averse & patient (about 10%) and
others less risk-averse & impatient (about 13%).

3.6. The discrete choice experiment (DCE)

Focus groups during the design phase identified some challenges of
biogas adoption. These included: (i) inadequate repair services and as-
sistance, as digesters need careful and constant maintenance to ensure
functionality; (ii) affordability, as the upfront construction costs are
still very high even after subtracting the subsidy; (iii) biogas is usually
insufficient to cover all of the family cooking needs, and (iv) alternative
uses of dung as fertilizer and fuel (dung cakes).12

Information from the focus groups were thus used to design the
DCE to assess household preferences for two types of cleaner cooking
technologies – a biogas system and a biomass ICS (rocket stove) – and
for cookstove attributes – smoke emissions, fuel & time requirements,
and maintenance assistance. Each bundle of technology and attributes
is presented with a price tag, described as the one-off payment needed
to acquire the stove. In all survey questions and analysis, the traditional
chulha (a simple biomass mud stove) served as the outside option.

The DCE consisted of 5 hypothetical decision scenarios, each pre-
sented through a choice-card. The 3 alternatives in each choice-card
are ‘labeled’ using the names of the most common cookstove available
in the sample area for each type: gobar gas (biogas plant), rocket
stove (biomass ICS), and the traditional chulha (the outside option).
Pictures of these types of stove are included in Figure 4 in Appendix
A. Each alternative was presented with a picture of the stove itself,
followed by sketches of levels of (i) its price (as a number and as a
picture of the corresponding banknotes), (ii) maintenance assistance,
(iii) smoke emissions, and (iv) fuel requirement. Before the DCE module
was started, each stove and each attribute was explained in detail
using information cards with pictures and sketches. Note, while the
fuel requirement was represented by wood logs in the choice card
for simplicity’s sake, the enumerator explained that this also included
the resources (money and time) needed to fuel the stove. That is, the
enumerator described this attribute as ‘‘the fuel needed for cooking
with the stove — both the amount and the time required to collect and
prepare it’’ to ensure that the attribute would be comparable between
stoves that use different fuels. An example of a choice card is shown
in Fig. 1. In Appendix B, we present the script used by enumerators to
describe the attributes and to explain the DCE itself.

The attributes for the traditional stove (chulha) are fixed for all
the decisions and are set to low maintenance assistance, high smoke
emissions, and medium fuel requirements; the price is stated as 100
INR (equivalent to 2.5 USD in 2021 terms). The attributes and attribute
levels used are summarized in Table 1. A total of 25 combinations
of attributes for the rocket stove and biogas system were obtained
using a D-efficient fractional factorial design. The 25 choice cards were
grouped into 5 sets of 5 cards each and respondents in each stratifica-
tion group were randomized into a choice set. The final dataset consists
of 503 respondents, each presented with 5 choice cards, resulting in
2,515 choices.13 In the empirical analysis, attributes are coded as being

12 Note that the slurry leftover in the biogas digester after the fermentation
process can also be used as fertilizer and in fact should be more effective than
using the fresh manure (Bond and Templeton, 2011).
13 The choice-cards are presented to all respondents in a choice set following
the same order. We do not see potential for anchoring as the combinations of
stove types and attribute levels do not follow any systematic pattern within a
set nor between the first cards of different sets. While randomizing the order
of the cards would allow us to formally control for anchoring, it introduces
some additional field complexities for the enumerators in terms of logistics
and data collection in this paper-based survey.
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Fig. 1. Example of choice-card used in the discrete-choice experiment.

Table 1
Attributes and attribute levels used in the discrete choice experiment (DCE).

Attributes Reference level Levels for
(chulha = traditional stove) biogas & rocket stove

Price (in 2011-INR) 100 INR 4,000/7,000/10,000 INR
(in 2021-USD) (2.5 USD) (100/175/250 USD)

Maintenance Low Low/High
Smoke High Low/High
Fuel requirement Medium Low/Medium/High

lower or higher than the baseline attributes of the traditional stove,
which are fixed across all questions. Price is considered a continuous
variable.14

The choice variable in our DCE is the alternative chosen among
the biogas system, the rocket stove, or the traditional chulha. After
the respondent selected their preferred alternative for a choice card,
they were asked to confirm whether they would indeed purchase that
cookstove at the proposed price and in 73% of the cases the respondent
answered affirmatively. In the analysis we only use responses that are
confirmed in the follow-up question and remove the responses that
were not confirmed.15

14 As a robustness check, we run additional regressions using price as a
categorical variable, as suggested by Lancsar et al. (2017), and find that the
coefficients respond close to linearly. For this reason, in the main specifications
presented in the paper price is modeled as continuous.
15 The following question was used to confirm whether they would indeed
purchase: ‘‘Would you purchase the alternative you have chosen at the given
price?’’. Most of the ‘‘no’’ answers are cases in which the selected option is the
rocket stove (only 55% of the cases where a rocket stove is selected are then
validated, compared to 70% for the biogas and 87% for the traditional chulha)
or cases in which the respondent selected the biogas plant or the traditional
chulha but already has one. As a robustness check, we repeat the analysis
with the full sample of choices. These results are similar to the main results

Because of our reliance on stated preferences, there is a risk of
hypothetical bias. For at least three reasons, however, we believe this is
the best approach for the context. First, we pursue the stated preference
approach in this paper because we wish to understand how different
attributes of this household energy system matter to households. As
detailed in over 50 years of development of stated preference methods,
these methods are essential when the real choice sets that households
face either do not contain all attribute combinations or the relevant
variations is simply unavailable. Therefore we can introduce such
variations into a DCE whereas the revealed preferences is not an
option in our study setting. Second, our paper adheres to the many
recommendations for how to minimize biases in stated preference
studies (Whittington, 2010). That is, first we implement a variety of
procedures in the design stage such as careful scenario development,
focus groups, pre-testing, enumerator training, field verification. Ad-
ditionally, in the analysis stage we also screen the data carefully and
check for expected correlations (e.g., with income) to minimize the
risk of such biases. We also draw on previous applications of stated
preference to household cooking such as Jeuland et al. (2015a) to
minimize obvious biases. Finally, the fact that the good offered is
tangible and commonly marketed reduces the risks of getting spurious,
overly strategic, or thoughtless responses. Risks of such responses are
heightened if respondents are asked to consider exotic settings or
unfamiliar non-market goods.

4. Results

4.1. The basic random parameters logit

We report the results from the DCE analysis in a set of tables and
graphs. In the tables, we present the estimated mean and estimated

described in the text, especially for the ASCs, while the WTP for attributes are
slightly higher but still comparable.



Energy Economics 107 (2022) 105796

8

M. Talevi et al.

Table 2
Regression table for the DCE.

WTP

(mean) (SD)

biogas ASC, if good experience 7348*** 5655***
(596) (832)

biogas ASC, if bad experience 5744*** 4185***
(525) (559)

biogas ASC, if no experience 2837*** 6881***
(801) (764)

rocket stove ASC −2768** 6147***
(919) (654)

maintenance assistance 609 3213***
(404) (591)

smoke reduction 4785*** 1389***
(456) (385)

fuel efficiency 3074*** 520
(320) (379)

N 5484
aic 2655
bic 2761

Standard errors in parentheses; * p<0.05 ** p<0.01 *** p<0.001.

standard deviation (SD) of the WTP distribution, with corresponding
standard errors for the level of precision of each estimate. In the
graphs we plot the distribution of the WTP, based on the estimated
means and standard deviations. The distribution is obtained from the
individual-level coefficients using 1,000 Halton draws for the simu-
lation, following the approach in Revelt and Train (2000).16 Density
functions are then estimated using Epanechnikov kernel density.

First, in Table 2 we report the parameters of a basic RPL model
with attributes and alternative-specific constants (ASC), distinguishing
the biogas ASC by the respondent’s level of experience with biogas. The
signs of the coefficients for the attributes are positive, as expected. The
mean WTP for smoke reductions is INR 4,785 and for fuel efficiency
is INR 3,074. The mean WTP for maintenance assistance is instead
low and not statistically different from zero (INR 609).17 The low
WTP for maintenance is consistent with another DCE (Jeuland et al.,
2015a), which suggest that maintenance is not a main concern for
fuelwood stoves. However, focus groups in our study area highlighted
maintenance as important for biogas functionality, so households might
consider this to be a biogas-specific issue that is captured in the biogas
ASC discussed next.

Second, we estimate technology-specific premiums (the ASCs). That
is, with our labeled DCE design, we can measure cookstove-specific
tastes, holding all other attributes (smokiness, fuel efficiency, and
maintenance assistance) as constant. Thus, we can report if respondents
are willing to pay a premium (or need to be compensated) for a specific
technology (biogas or rocket stove) without regard to the attributes.
We find that the mean WTP for the rocket stove premium is negative
and statistically significant at conventional levels, suggesting that the
traditional chulha (outside option) is preferred to the rocket stove.
The average respondent needs compensation of at least INR 2,768 (or
USD 69 in current value). There are two possible reasons for lack of
enthusiasm for rocket stoves in our study area. First, these stoves did
not have wide penetration at the time of the survey and so respondents
may have been unfamiliar with it. In contrast, biogas systems were
heavily advertised and subsidized in the surveyed villages. Second, the

16 The simulations are performed using the package mixlbeta (Hole, 2007,
2016).
17 To better understand what these numbers mean, in present-day USD: the
mean WTP for smoke reductions is USD 120, for fuel efficiency is USD 77, and
for maintenance is USD 15.

rocket stoves marketed in the area during the study period were early
designs that often failed to deliver the promised improvements.18

On the contrary, the biogas system is on average strongly preferred
to the chulha, all else equal. In the case of biogas, this premium should
capture some combination of the indirect costs and benefits of the
technology that are not included as attributes, such as the improved
waste disposal, the fertilizer obtained as byproduct of the fermentation
process, and the space taken up by the biogas digester on small house
plots. The magnitude of the WTP for the biogas premium nonetheless
depends on respondent experiences. Those with a good experience have
the largest mean WTP (INR 7,348), followed by those who experienced
malfunctions (INR 5,744), and then by those with no experience (INR
2,837).19 The valuation of the technology per se (without considering
attributes) therefore appears to be counteracted by negative expe-
riences and failures, when compared to households who have had
positive experiences. Thus, construction quality, maintenance services,
and customer assistance could sustain interest in the technology and
avoid abandonment, as noted in a different context by Gould et al.
(2018).

Finally, we find that the level of experience is not the only source
of heterogeneous WTP. The estimated SDs of the WTP distributions
that capture unobserved heterogeneity are all large in magnitude and
significantly different from zero. To better understand and explain these
variations, we report on the analyses using interaction terms in the next
sub-section.

4.2. Considering experience and risk & time preferences

Here we present on two specific potential sources of preference
heterogeneity – risk and time preferences – that are modeled by in-
cluding interaction terms as described in Eqs. (8) and (9). We include
risk and time preferences in two separate models due to power and
computational limitations of the flexible specification we use.20 We
present the estimated means and SDs of the WTP for interactions with
time preferences in Table 3 and for interactions with risk aversion in
Table 4. To better understand the results, plots of the WTP distributions
simulated using the estimated parameters are shown in Figs. 2 and
3. Note that even after controlling for these household types, we see
unobserved heterogeneity in the WTP for each attribute and each
ASC. This is shown by the highly significant SDs of the WTP and
can be visualized in the corresponding spread of the estimated density
functions in Figs. 2 and 3. The only exception is the case of risk-averse
respondents’ WTP for fuel efficiency, as the SD is not significantly
different from zero.

The results in Table 3 and Fig. 2 suggest that compared to patient
respondents, respondents who are more impatient appear to have (i)
larger mean WTP for maintenance assistance, (ii) lower WTP for fuel
efficiency, and (iii) similar WTP for smoke reduction. The rocket stove
premium and the biogas premium also tend to be lower for households
who are more impatient, although in the case of biogas this is true
only in the group with no experience. These results are intuitive, as
impatient respondents likely discount future fuel savings and other

18 Some well-designed experimental studies (incidentally also in Odisha —
our study site) that evaluated poor stove designs (traditional chulhas with a
chimney) found null effects on various outcomes (Hanna et al., 2016). Other
studies that evaluated more recent and more efficient natural draft biomass-
burning improved cookstoves found positive outcomes for fuel efficiency, time
savings, and health (Brooks et al., 2016; Jeuland et al., 2020; Lewis et al.,
2015; Pattanayak et al., 2019; Krishnapriya et al., 2021).
19 In present-day USD, these correspond to USD 184 (good experience), USD
144 (malfunctioning), and USD 71 (no experience).
20 In general, we consider risk aversion and impatience to capture related
preferences and tolerance towards uncertainty. As mentioned previously,
though there is some overlap between risk-averse & impatient (54% of overall
sample are both risk-averse and impatient), this overlap is not perfect.
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Table 3
Regression table, model with time preferences.

WTP, time preferences

(mean) (SD)

biogas ASC, if good exp. and patient 6610*** 5724***
(1204) (1657)

biogas ASC, if good exp. and impatient 7125*** 6019***
(971) (1336)

biogas ASC, if bad exp. and patient 6471*** 4506***
(1033) (1134)

biogas ASC, if bad exp. and impatient 5256*** 3504***
(728) (939)

biogas ASC, if no exp. and patient 6001*** 6518***
(981) (1238)

biogas ASC, if no exp. and impatient 1613 8131***
(915) (1244)

rocket stove ASC, if patient −1732 7854***
(1383) (1241)

rocket stove ASC, if impatient −4376*** 6065***
(1279) (924)

maint. assist., if patient 198 3478***
(660) (733)

maint. assist., if impatient 1117* 3967***
(527) (738)

smoke reduct., if patient 5091*** 1853*
(722) (869)

smoke reduct., if impatient 4932*** 1409
(589) (1162)

fuel efficiency, if patient 4144*** 2656***
(530) (691)

fuel efficiency, if impatient 2824*** 1237*
(344) (543)

N 5484
aic 2661.55
bic 2859.84

Standard errors in parentheses; * p<0.05 ** p<0.01 *** p<0.001.

future benefits of the non-traditional stoves more than their patient
counterparts and therefore may not want to wait for repair in case of
malfunctions.

Turning to risk aversion in Table 4 and Fig. 3, we find that compared
to less risk-averse respondents, the more risk-averse have (i) larger
mean WTP for maintenance assistance, (ii) lower mean WTP for smoke
reduction, and (iii) similar WTP for fuel efficiency. We also find that
the more risk-averse are willing to pay lower premiums for the rocket
stove and for the biogas system. Risk-averse individuals may prefer
maintenance service that decreases the risk of malfunctions, and in
general are less likely to try new technologies as they are perceived as
riskier than the traditional ones. The result on smoke reduction suggests
that aversion to monetary risks may not directly translate into aversion
to health risks, or that the latter are not evident to the respondent. This
result may well be specific to our study sample because most respon-
dents are men, while health risks from polluting cooking practices tend
to disproportionately affect women and children.

Nonetheless, we find small differences in estimated WTP for each
attribute and each technology between households who are impatient
and those who are patient, with the notable exception of the biogas
premium for respondents with no experience (Table 2). This can also be
seen in the plots, as the peak of the distributions for each WTP for the
impatient respondents tend to be close to the corresponding WTP for
the more patient respondents and the density functions tend to overlap
at least in part, except in the case of the biogas premium for the no-
experience group (Fig. 2). The same patterns are true for risk-averse
respondents: the mean WTP for the same characteristic between the
two groups (more and less risk-averse) tend to be quite close and the
corresponding density functions tend to overlap at least in part in all
cases but the biogas premium for inexperienced respondents.

Given these findings, it is unclear to what extent time and risk
preferences matter. We use a Wald test to formally assess whether the
differences in mean WTP between impatient and patient respondents

Fig. 2. Estimated distributions of the WTP of patient and impatient respondents.
Density functions are estimated using Epanechnikov kernel density. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Table 4
Regression table, model with risk preferences.

WTP, risk aversion

(mean) (SD)

biogas ASC, if good exp. and less risk averse 8038*** 4810***
(720) (886)

biogas ASC, if good exp. and more risk averse 7100*** 7323***
(591) (978)

biogas ASC, if bad exp. and less risk averse 5399*** 3781***
(641) (635)

biogas ASC, if bad exp. and more risk averse 5014*** 3311***
(588) (615)

biogas ASC, if no exp. and less risk averse 5148*** 5332***
(659) (547)

biogas ASC, if no exp. and more risk averse 2781*** 7677***
(624) (994)

rocket stove ASC, if less risk averse −2315 6978***
(1259) (1090)

rocket stove ASC, if more risk averse −3021** 4590***
(1069) (551)

maint. assist., if less risk averse 631 2386***
(479) (593)

maint. assist., if more risk averse 1223** 1545***
(389) (393)

smoke reduct., if less risk averse 5060*** 2814***
(659) (424)

smoke reduct., if more risk averse 3927*** 1846***
(471) (313)

fuel efficiency, if less risk averse 2929*** 1972***
(496) (363)

fuel efficiency, if more risk averse 2863*** 24
(290) (320)

N 5484
aic 2676.12
bic 2874.40

Standard errors in parentheses; * p<0.05 ** p<0.01 *** p<0.001.

Table 5
Difference in WTP between impatient and patient respondents (top) and between more
risk-averse and less risk-averse respondents (bottom).

Test of difference in means between impatient and patient respondents

Difference in means (INR) 𝑝-value

WTP for biogas, if good experience 518 0.738
WTP for biogas, if bad experience −1215 0.335
WTP for biogas, if no experience −4388** 0.001
WTP for rocket stove −2644 0.114
WTP for maintenance assistance 919 0.274
WTP for smoke reduction −160 0.846
WTP for fuel efficiency −1320* 0.020

* p<0.05 ** p<0.01 *** p<0.001.

Test of difference in means between more and less risk averse respondents

Difference in means (INR) 𝑝-value

WTP for biogas, if good experience −939 0.314
WTP for biogas, if bad experience −384 0.657
WTP for biogas, if no experience −2366** 0.008
WTP for rocket stove −705 0.648
WTP for maintenance assistance 592 0.331
WTP for smoke reduction −1134 0.135
WTP for fuel efficiency −65 0.903

* p<0.05 ** p<0.01 *** p<0.001.

are statistically significant. We also conduct the same test for the
differences in mean WTP between more risk-averse and less risk-averse
respondents. The magnitude of the differences and the p-values from
the tests are reported in Table 5. We find a marginally significant
difference in the mean WTP for fuel efficiency between impatient and
patient respondents, which is likely because impatient respondents
more heavily discount the future fuel savings of an efficient stove.

Only in the case of households with no experience, impatience
and risk aversion is correlated with significantly lower mean WTP for
biogas. That is, in the subgroup of households with no experience,

Fig. 3. Estimated distributions of the WTP of less risk-averse and more risk-averse
respondents. Density functions are estimated using Epanechnikov kernel density. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

impatient respondents are willing to pay on average INR 4,388 less for

biogas than patient respondents, while more risk-averse respondents
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are willing to pay on average INR 2,366 less than less risk-averse
respondents. Moreover, the distribution of the WTP for biogas for
respondents who have no experience and are impatient do not overlap
almost at all with the corresponding distribution for respondents who
are more patient, suggesting that the difference in WTP is not confined
to the average respondent but to the whole distribution (compare the
dashed and solid blue curves in Fig. 2.c). A similar but less extreme
result can be observed for risk aversion, as the distributions are closer
but still have almost no overlapping (compare the dashed and solid
blue curves in Fig. 3.c). Collectively, these results suggest that while
risk aversion and impatience depress demand for biogas, both positive
and negative experiences mitigate these effects, possibly because they
make this new technology and all its benefits more familiar.

4.3. Further reflections on modeling experience

Given the focus on experience in our analysis, we conduct ro-
bustness checks and offer a few caveats. First, households who have
experience with biogas might have had a pre-existing interest in the
technology. Comparing them with households who intend to install
soon might therefore provide more meaningful insights. We distinguish
the group that has no experience into those who are planning to
install biogas soon (55% of this subsample) and those who have no
plans to install (45% of this subsample). These subgroups are almost
equally split between households who already have another ICS and
households who rely exclusively on chulhas. Results of the analysis with
this additional distinction are presented in Appendix F. Predictably, we
find that those who plan to install biogas have a much larger WTP for
biogas than those who do not.

Second, experience with biogas could imply that the household has
already faced a specific price for the system when it was purchased. We
might be concerned therefore that households ‘anchor’ their responses
to the price they have already experienced rather than stating their real
preferences. In a further robustness check, we find that whether the
price presented in the choice-card is lower or higher than the price paid
at time of purchase is insignificant when controlling for the general
price level and the other attributes used in the DCE (tables available
on request).

Third, we cannot rule out that households who already have a
biogas system had systematically different preferences for biogas even
before adoption, or that those who experienced malfunctions had a
more pessimistic opinion about the technology, which is what led to
the malfunctions in the first place. In Appendix D and in Table 10 in
Appendix E we do not find major differences between households with
good and bad experience along observed demographics characteristics.
Nonetheless, to control for the role of other observable characteristics
of the respondents, such as livestock and disposable income, we con-
duct two robustness checks (Appendix E). Both the semi-parametric
analysis (using inverse probability weighting) and the non-parametric
analysis (achieving balance on key observables) confirm the main
findings reported thus far. Nonetheless, given the nature of the data,
we caution that these results are best viewed as careful correlations
rather than causal effects of experience on WTP and more research is
needed to confirm the direction of causality.

Finally, despite the numerous robustness checks, our experience cat-
egories are simplifications. Future
researchers could explore the continuum of experiences that individuals
may have with a technology. For example, future data collections could
include questions on the severity of the malfunctions, how long and
how often the system has been used, and a subjective satisfaction
scale for the experience. Further, while we focus on first-hand personal
experience, future research may expand our findings by looking at how
individuals learn from their peers (e.g., Bonan et al., 2021). Future
research should also more formally integrate qualitative research on
experience, for example by using mixed methods.

5. Summary & conclusions

Part of the reason energy poverty is both pernicious and persistent is
because lack of access to energy-efficient technologies can keep people
in socio-economic poverty, which in turn makes it harder to adopt and
use clean energy. Biogas has the potential to break this cycle and to
deliver important benefits in rural areas with a hot and humid climate,
which often are the hotspots for energy poverty. Understanding which
types of households are interested in what aspects of biogas and other
clean cooking technologies can help design better promotion efforts,
therefore making sure the products offered match the needs of the en-
ergy poor. In this paper, we try to fill this gap by using a DCE to better
characterize household preferences for biogas and other ICS in India.
We find that respondents have a high WTP for biogas, on average. In
contrast, WTP for rocket stoves (a biomass ICS alternative promoted
by the private sector) is much lower, especially when contrasted with
the familiar traditional biomass-burning chulha. Households appear to
assign high values to smoke reduction and fuel savings, two dimensions
on which biogas can deliver substantial improvements.

However, these general results hide substantial preference hetero-
geneity, especially with respect to previous experience with biogas.
While none of the following findings is surprising per se, we find that
households who have had a good experience have a higher mean
premium for biogas compared to households who have a bad expe-
rience (such as cracked structure, inlet or outlet problems, or pipe
problems). We also find that while risk aversion and impatience are
associated with lower WTP for biogas, previous experience of any kind
(good or bad) attenuates this gap. While these are new findings in
the household energy poverty literature in LMICs, they resonate with
lessons about learning processes from the broader technology diffusion
literature (Gillingham and Palmer, 2014; Schleich et al., 2019).

These findings collectively clarify our main contributions to the
small yet growing microeconomics literature on household cooking and
energy poverty. Many of the published studies of demand in rural
areas of LMICs inadvertently assume that the technology is new for
everyone, when in reality households have varied experiences with
past trials and distribution programs. This phenomenon likely intro-
duces demand variation through learning. Thus, our findings lend
themselves to two kinds of recommendations. First, monetary incen-
tives for adoption of biogas should be complemented not just with
generic demonstration campaigns, but also with technology trials that
allow households to gain hands-on experience. Such efforts could be
organized by having household ambassadors for the technology in
each village, or by a local promoter who could, for example, install
biogas in local schools or other community facilities. Second, beyond
ensuring that the technology is locally-relevant and matches household-
specific needs, the product must be of high quality and must come
with easily accessible after-sales customer service, including but not
limited to affordable maintenance and repair services.21 Note that while
the National Biogas and Manure Management Programme promises
warranties, training, and subsidies for repair, ground implementation
falls woefully short (Raha et al., 2014). Maintenance and repair ser-
vices can in turn also limit disinterest, discontent, abandonment, and
negative opinions that reduce adoption by others.22 Our results also
have a methodological implication, as they show the importance of
controlling for previous experiences when conducting a DCE because

21 See for example the training programs, customer service centers, and re-
pair campaigns envisioned by the Africa Biogas Partnership Program (Clemens
et al., 2018).
22 A small fraction of the households in our sample that have bad expe-
riences (16%) stated that they have no interest in repairing the plant. Poor
quality systems may therefore result in abandonment and low valuation of
the technology. If negative opinions spread faster than positive opinions as
found by Miller and Mobarak (2015), this might further reduce uptake of the
technology.



Energy Economics 107 (2022) 105796

12

M. Talevi et al.

some households may already be familiar with the technology being
offered. We provide a first attempt on how to do this, as well as caveats
and suggestions on how to better collect data and model experience.

We conclude with two reflections. First, even though positive ex-
periences boost demand, many households face a litany of constraints
— income, credit, and liquidity, among others. Moreover, tastes for
biogas are heterogeneous and some households have simply low in-
terest in the technology. These households might therefore be unable
or unwilling to cover the upfront costs of building a biogas system.
Because biogas use can reduce a host of social costs of cooking related
to health, environment, and climate (including methane and 𝑃𝑀2.5

emissions), households should be offered subsidies that are framed as
payments for reducing negative externalities. Second, while there is
substantial interest in biogas in the study area, our findings suggest that
penetration could be improved by complementing the existing subsidy
schemes both with technology trials at the start and customer support
(maintenance and repair service) over the lifetime of the biogas system.
Experience can sustain use if and only if behavioral and engineering
malfunctions do not generate discontent, leading to abandonment.
Collectively, this shows how eliciting tastes (e.g., stated preference
surveys) and explaining demand heterogeneity (e.g., random parameter
logit modeling) can aid the design and supply of clean energy solutions
in rural areas of LMICs, the hotspot for energy poverty.
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